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WAVE REGIMES ON A FERROMAGNETIC VISCOUS-FLUID FILM

FLOWING DOWN A VERTICAL CYLINDER

UDC 532.51S. N. Samatov and O. Yu. Tsvelodub

Axially symmetrical waves on the surface of a ferromagnetic viscous-fluid film flowing down a cylin-
drical conductor with alternating current are considered. In this case, in addition to the gravitational
force, the film is affected by a spatially nonuniform time-dependent magnetic field. The film thickness
was assumed to be small compared to the radius of the conductor. In the long-wave approximation,
a model equation for the deviation of the film thickness from its undisturbed value is obtained. Some
numerical solutions of this equations are reported.

1. Formulation of the Problem. It is known that the substantial difference between flows of ferromagnetic
and normal fluids is due to the volume magnetic force acting in the direction normal to the stream velocity [1, 2].
This force largely affects stability of the flow. In its various statements, the problem about a film flow of a
ferromagnetic fluid was studied in many works. For instance, Demekhin et al. [3] considered the problem about the
wave regime of a thin layer of a magnetic fluid flowing down a vertical conductor with direct current at moderate
Reynolds numbers. In the long-wave approximation, the authors [3] obtained a system of nonlinear differential
equations describing the propagation of finite-amplitude axisymmetric disturbances. Some numerical solutions of
the system were constructed.

In the present work, we consider the effect of the time-dependent magnetic force on the wave regimes of the
flow.

A thin-film flow of a viscous ferromagnetic fluid flowing down a vertical cylindrical conductor in the gravity
field is examined. The conductor carries an alternating current I0 cos(ω0t + φ). The law of magnetization of
the magnetic fluid is assumed to be linear. We consider an axially symmetrical case, in which no disturbances
of the magnetic field H and no magnetic jump of pressure occur on the free surface of the fluid. In the long-
wave approximation and in the case of low rates of the fluid flow (Reynolds numbers of the order of unity), this
problem can be reduced to solving one nonlinear differential equation for the deviation of the film thickness from
its undisturbed value.

In the quasi-stationary approximation, the system of the Navier–Stokes equations that describes the film
flow has the form [1, 2]

∂v

∂t
+ (v∇)v = −∇p

ρ
+ ν∆v + g +

f

ρ
, div v = 0. (1)

Here v is the velocity, p is the pressure, ρ is the density, ν is the kinematic viscosity, t is the time, g is the free-fall
acceleration, f = µ0(M∇)H is the force acting on a unit volume of the ferromagnetic fluid from the side of the
magnetic field, µ0 is the magnetic constant, H is the magnetic-field intensity, and M is the magnetization of the
fluid.

We introduce a cylindrical coordinate system in which the z axis directed along the gravitational force is
the centerline of the conductor of radius R. The radial coordinate of the boundary of the undisturbed free surface
of the ferromagnetic fluid is r = R+ h0 (h0 is the thickness of the undisturbed film).
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The magnetic field produced by the linear current outside the conductor is

r > R: H = (0,Hϕ, 0), Hϕ = I/(2πr) = I0 cos (ω0t+ φ)/(2πr).

Since in the flow region rotH = 0 and a linear law of magnetization M = χH is assumed (χ is the magnetic
susceptibility of the ferromagnetic fluid), then

f = µ0(M∇)H = µ0χ(H∇)H = µ0χ(∇H2/2− [H, rotH]) = µ0χ∇H2/2.

At the surface of the cylinder, we adopt the boundary condition

r = R: v = 0, (2)

and at the free surface of the film we use the kinematic condition
∂h

∂t
+ u

∂h

∂z
= v (3)

and dynamic conditions

r = R+ h0 + h: (p− σ/R∗)ni − τ (1)
ik nk = p0ni − τ (2)

ik nk. (4)

Here u and v are, respectively, the z- and r-components of the flow velocity, p is the pressure in the fluid; p0 is the
ambient pressure, ni are the components of the normal n = (nz, nr) = (−∂h/∂z, 1)/

√
1 + (∂h/∂z)2,

1
R∗

=
[1 + (∂h/∂z)2]/(R+ h0 + h)− ∂2h/∂z2

[1 + (∂h/∂z)2]3/2

is the mean curvature, τik = σik +HiBk − µ0H
2δik/2 is the stress tensor, which includes the viscous-stress tensor

σik and the Maxwell stress tensor [the superscripts (1) and (2) in formula (4) refer to the fluid and to the ambient
medium], and B = µ0(1 + χ)H is the magnetic induction.

System (1) with the boundary conditions (2)–(4) admits a solution with a cylindrical free surface of uniform
thickness

u(r) ≡ V =
g

2ν

(
(R+ h0)2 ln

r

R
− r2 −R2

2

)
, P (r) = p0 +

σ

R+ h0
+
µ0χI

2

8π2

( 1
r2
− 1

(R+ h0)2

)
.

It can easily be shown, however, that such a flow is unstable against infinitesimal perturbations and, as these
perturbations further develop, this flow becomes wavy.

The purpose of the present study is to derive a simple model for nonlinear wave regimes in a falling film of
a ferromagnetic fluid.

Let V0 be the velocity of the free surface of the undisturbed film of thickness h0, and λ be the characteristic
streamwise length of the perturbation. For convenience, we may introduce, instead of the radial coordinate r, the
quantity r −R, which hereafter will be designates as r.

Using the parameters λ/V0, V0, and ρgh0 as time, velocity, and pressure scales, and h0 and λ as spatial
scales in the r- and z-directions, respectively, we write the equations of the film flow in the nondimensional form:

ε
∂u

∂t
+ εu

∂u

∂z
+ v

∂u

∂r
= − ε

Fr
∂p

∂z
+

δ

Re(1 + δr)
∂u

∂r
+

1
Re

∂2u

∂r2
+
ε2

Re
∂2u

∂z2
+

1
Fr
,

ε
∂v

∂t
+ εu

∂v

∂z
+ v

∂v

∂r
= − 1

Fr
∂p

∂r
+

δ

Re(1 + δr)
∂v

∂r

+
1

Re
∂2v

∂r2
+
ε2

Re
∂2v

∂z2
− δ2

Re(1 + δr)2
v − B We δ2

Fr(1 + δr)3
cos2(ωt+ φ), (5)

ε
∂u

∂z
+

δ

1 + δr
v +

∂v

∂r
= 0.

Here Re = V0h0/ν is the Reynolds number, Fr = V 2
0 /(gh0) is the Froude number, We = σ/(ρgh2

0) is the Weber
number, σ is the surface-tension coefficient, B = µ0χI

2
0/(4π

2σR) is the Bond magnetic number, ω = ω0λ/V0,
ε = h0/λ, and δ = h0/R.
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The boundary conditions are

r = 0: v = 0; (6)

r = 1 + h: ε
(
p− δWe

1 + δ + δh
+ We ε2 ∂

2h

∂z2
− 2ε

Fr
Re

∂u

∂z

)∂h
∂z

+
Fr
Re

(∂u
∂r

+ ε
∂v

∂z

)
= εp0

∂h

∂z
,

p− δWe
1 + δ + δh

+ We ε2 ∂
2h

∂z2
− 2

Fr
Re

∂v

∂r
+ ε

Fr
Re

(∂u
∂r

+ ε
∂v

∂z

)∂h
∂z

= p0, (7)

ε
(∂h
∂t

+ u
∂h

∂z

)
= v.

Representing the disturbed flow in the form u = V + εu′, v = ε2v′, p = P + εp′, and h = εh′ and neglecting terms
of the order of ε2 and higher in (5), we obtain the following system of equations for the disturbed quantities (the
primes are omitted):

ε
∂u

∂t
+ εV

∂u

∂z
+ εv

dV

dr
= − ε

Fr
∂p

∂z
+

δ

Re(1 + δr)
∂u

∂r
+

1
Re

∂2u

∂r2
,

(8)
∂p

∂r
= 0,

∂u

∂z
+

δ

1 + δr
v +

∂v

∂r
= 0.

The boundary conditions (6) remain unchanged: u = v = 0 at r = 0.
We transfer the boundary conditions (7) from the free surface to the undisturbed level r = 1:

∂u

∂r
+
d2V

dr2
h = 0,

(9)

p+ ε
∂p

∂r
h+

δ2 We
(1 + δ)2

[1− B cos2 (ωt+ φ)]h+ We ε2 ∂
2h

∂z2
− 2ε

Fr
Re

∂v

∂r
= 0;

∂h

∂t
+ (εu+ V )

∂h

∂z
= v + ε

∂v

∂r
h. (10)

The surface tension is assumed to be strong enough so that the values of We ε2 and We δ2 are of the order
of unity.

We seek for the solution of system (8) with the boundary conditions (9) and (10) in the form

(u, v, p) =
∞∑
n=0

εn(un, vn, pn), h(z, t) = h(z, t, εt) = h(z, t, t1).

Equating the coefficients at the same powers of ε, in the zero approximation we have

u0 =
Re
Fr

rh, v0 = −Re
Fr

r2

2
∂h

∂z
, p0 = −We δ2[1− B cos2 (ωt+ φ)]h−We ε2 ∂

2h

∂z2
.

Substituting the zero-order solution of system (8) into the kinematic condition (10), in the first approximation we
obtain

∂h

∂t
+
(

1 +
Re
2 Fr

)∂h
∂z

= 0. (11)

With the expression for the flow velocity at the surface of the undisturbed film, it can easily be shown that
Re /Fr = 2. Then, it follows from (11) that, in the first approximation, all disturbances propagate at a velocity
twice the velocity at the undisturbed free boundary.

For the next order in ε, from system (8) we obtain

∂u0

∂t
+ V

∂u0

∂z
+ v0

dV

dr
= − 1

Fr
∂p0

∂z
+

S

Re(1 + δr)
∂u0

∂r
+

1
Re

∂2u1

∂r2
,

(12)
∂p1

∂r
= 0,

∂u1

∂z
+

S

1 + δr
v0 +

∂v1

∂r
= 0,

where S = δ/ε = λ/R ∼ 1. In this approximation, the boundary conditions at r = 1 take the form
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∂u1

∂r
= 0, p1 +

∂p0

∂r
h− 2

Fr
Re

∂v0

∂r
− 2Sδ2 We[1− B cos2 (ωt+ φ)]h = 0; (13)

∂h

∂t1
+ u0

∂h

∂z
=
∂v0

∂r
h+ v1. (14)

The solution of system (12) with the boundary condition (13) are easy to find; this solution, however, is too
cumbersome to be presented here, and we give only the final expression for the velocity v1 at the boundary:

v1 =
5
24

Re2

Fr
∂2h

∂t∂z
− 1

3
Re
Fr

We
(
δ2[1− B cos2 (ωt+ φ)]

∂2h

∂z2
+ ε2 ∂

4h

∂z4

)
− S

3
Re
Fr

∂h

∂z
+

3
40

R3

Fr2

∂2h

∂z2
.

Passing into a reference system moving with a velocity 2 + 2δ/3 and substituting the expression for v1(1)
into the kinematic condition (14), we obtain the equation

∂h

∂t1
+ 4h

∂h

∂x
+
[ 8

15
Re +

2
3

We δ2
(

1− B
2

)
− We δ2

3
B cos (2ω1t1 + φ)

]∂2h

∂x2
+

2
3

We ε2 ∂
4h

∂x4
= 0. (15)

Here h = h(x, t1), x = z − 2t− 2δt/3, and ω1 = ω/ε.
If the conductor carries a direct current, then, the bracketed time-periodic function in (15) vanishes, and

Eq. (15) transforms into the well-known Kuramoto–Sivashinsky equation. In that case, as it follows from (15), if
the magnetic Bond number is greater than the critical value B∗ = 2 + 8 Re /(5 We δ2), then the constant coefficient
at the second derivative is negative. This means that, in this model, a sufficiently intense magnetic field perfectly
stabilizes the flow, i.e., there are no unstable disturbances, and all infinitesimal perturbations readily decay with
time.

In the present study, we deal with Bond numbers smaller than the critical one. In this case, Eq. (15) can be
transformed into an equation for which, at Ieff = I0/

√
2 (Ieff is the direct current for which the ponderomotive force

due to the magnetic field equals the time-mean force at the given alternating current), the neutral wavenumber αn
for infinitesimal perturbations equals unity. It follows from Eq. (15) that in this case the condition

4 Re/(5 We ε2) = 1− S2(1− B /2) (16)

must be fulfilled. Equation (16) gives a more adequate estimate of the characteristic streamwise length of the
disturbances. It follows from this equation that

ε = h0/λ = δ(1− B/2 + 4 Re/(5 We δ2))1/2.

Making the substitutions h(x, t1) = 2 We ε2H(x, τ)/3, τ = 2 We ε2t1/3, ω1 = 2 We ε2Ω/3, and C = S2 B /2, we
finally obtain

∂H

∂τ
+ 4H

∂H

∂x
+ [1− C cos(2Ωτ + φ)]

∂2H

∂x2
+
∂4H

∂x4
= 0. (17)

2. Solution Algorithm. Equation (17) with the nonlinear term omitted describes the stability of the
initial flow against infinitesimal disturbances. It should be remembered that the neutral wavenumber αn equals
unity for C = 0. Consequently, it is the disturbances with wavenumbers α < 1 that are unstable here.

To analyze the nonlinear periodical solutions, we numerically solved Eq. (17). The solution was represented
as a Fourier series in space with time-dependent harmonics:

H(x, τ) =
∞∑

n=−∞
Hn(τ) exp (inαx). (18)

Since the values of H are real, the relation H−n = H∗n holds for the harmonics Hn (the superscript asterisk
denotes a complex-conjugate quantity).

Substituting (18) into (17), we obtain an infinite system of nonlinear ordinary differential equations for the
harmonics Hn. Truncating series (18), i.e., assuming that all harmonics beginning from a certain number N equal
zero, we arrive at a finite approximation of the system:

dHn

dτ
= α2n2{[1− C cos (2Ωτ + φ)]− α2n2}Hn − 4iαn

N∑
m=N−n

HmHn−m, n = 0, 1, . . . , N. (19)

It follows from (19) that the equation for the zero (fundamental) harmonics is trivial, i.e., it holds for an arbitrary
constant value of H0. In what follows, we are going to construct solutions in which this constant equals zero.
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Fig. 1

Separating the real and imaginary parts in (19), we have a system of 2N ordinary differential equations for
2N unknown functions.

System (19) was solved numerically using a fifth-order Runge–Kutta method with an automatic choice of
the integration step and controlled accuracy. The total number of harmonics was taken such that to satisfy the
relation |HN |/max |Hn| < 10−4. The main results were obtained for N = 10. To verify the solutions obtained, in
some cases we also solved the system with N=25. A direct comparison revealed only a small difference between the
results, no greater than in the fourth or fifth decimal digit.

3. Results. As is noted above, Eq. (17) with a direct current (C = 0) transforms into the well-
known Kuramoto–Sivashinsky equation, which was the subject matter of many previous studies. It follows from
these studies that the solution pattern of the Kuramoto–Sivashinsky equation is extremely rich. For instance,
Nepomnyashchii [4] showed that, for α = 1, a family of periodic solutions of the Kuramoto–Sivashinsky equation
appears, branching off from its trivial solution, which can be extended to the wavenumber α = 0.4979 (the so-called
first family of solutions). In our previous studies [5, 6] we showed how a succession of bifurcations, which gives
rise to increasingly more complex solutions, emerges. In view of the great complexity of possible solutions of the
Kuramoto–Sivashinsky equation, here we restrict our consideration to such solutions of Eq. (17) for which the initial
disturbances for C = 0 develop into steady-state traveling solutions of the Kuramoto–Sivashinsky equation.

In the computations described below, the real and imaginary parts of the first harmonic H1 were assumed
to equal 0.5 and 0, respectively. The initial amplitudes of all other harmonics were put equal to zero.

As the computations showed, even in that domain of parameters where the structure of solutions of the
Kuramoto–Sivashinsky equation is rather simple, the wave pattern for Eq. (17) becomes more diversified. The
reason is that the amplitudes of harmonics oscillate in time under the action of the periodic magnetic field. These
oscillations are largely affected by both the amplitude and frequency of the alternating current. The effect of the
phase φ is much less pronounced; this effect is observed only in the initial transition regime, for which reason we
assumed that φ = 0 in all computations described below.

Figure 1a shows the time evolution of the amplitudes of the first three harmonics (curves 1–3) for the
wavenumber α = 0.8, C = 1, and Ω = 0.5. The amplitudes of all other harmonics were within several percents of
the highest amplitude of the third harmonic. Since the first harmonic is always more intense than the second one,
the shape of the wave profile is almost sinusoidal. In turn, as follows from Fig. 1a, at least the first two harmonics
oscillate at t > π/Ω according to a quasi-sinusoidal law. Figure 1b shows the time sweep of the wave profile for the
same values of determining parameters. In this case, the shape of the wave profile along the x and t coordinates is
almost sinusoidal.

As the computations showed, for wavenumbers from a close vicinity of the neutral wavenumber, the solutions
of this type are typical, provided that C/Ω < 1, which condition is quite realistic because, on the one hand, the
lower the amplitude, the weaker the effect due to the alternating magnetic field, and on the other hand, the influence
of the alternating component of the magnetic force at a sufficiently high frequency is insignificant.
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Fig. 2

Fig. 3

For the indicated relation between the amplitude C and frequency Ω, as we move further along the wavenum-
ber α into the linear instability region for the Kuramoto–Sivashinsky equation, the wave profile becomes essentially
nonsinusoidal. The results plotted in Fig. 2 were obtained for α = 0.6, C = 1, and Ω = 0.5. As is shown in Fig. 2a,
the second harmonic (curve 2) for the above values of governing parameters becomes comparable with the first one
(curve 1) and sometimes even exceeds it. Such a behavior of the second harmonic is due to the fact that, during
these time intervals, the second harmonic also enters the instability region together with the first harmonic. Indeed,
it may be argued that, unlike the case of the Kuramoto–Sivashinsky equation, the linear instability region for the
solutions of Eq. (17) in a sense varies in time. In particular, if the frequency Ω is low, then we may consider the
phase at the coefficient at the second derivative in Eq. (17) as being almost constant during a fairly long period of
time. Then, the local linear instability region lies in the wavenumber interval

0 < α < [1− C cos (Ωτ + φ)]1/2. (20)

Thus, in this case, at the moments when the second harmonic (α = 1.2) falls in the interval (20) together
with the first harmonic (α = 0.6); its amplitude rapidly grows both due to the self-amplification caused by linear
instability and due to the nonlinear action of the first harmonic. In this situation, the third harmonic always remains
in the linear stability region, being, therefore, weaker than the first two harmonics (curve 3 in Fig. 2a).

The time sweep of the wave profile is shown in Fig. 2b. In this case, the shape of the wave profile along the
x and t coordinates is seen to differ considerably from a sinusoidal one.
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If the frequency Ω is low (of the order of 0.1 or smaller), then even for wavenumbers close to the neutral
wavenumber (α = 1), the fluctuations of the solution in time grow in value with increasing amplitude of the
alternating current, becoming increasingly more nonsinusoidal (Fig. 3). The results shown in Fig. 3 were obtained
for C = 2, Ω = 0.05, and α = 0.95. In this case, these appear regions where the surface of the fluid remains
undisturbed during a fairly long time interval. The explanation to this behavior of the solution is analogous to that
previously given in [7] for the case of a film flow down a vibrating vertical plate. The latter is related to the fact
that, for low frequencies Ω and sufficiently large amplitudes C, the first harmonic at some moments leaves the local
linear instability region (20). As the wavenumber α enters the linear stability region, the disturbance amplitude
rapidly vanishes. As a result, there are no disturbances on the film during a fairly long period till the wavenumber
α enters the local instability region (20) once again. At this moment, the signal rapidly increases, and the process
recurs over and over.

Figure 3a illustrates the time evolution of the first three harmonics (curves 1–3). The time intervals in which
the harmonics exhibit nonzero amplitudes are rather narrow. Since the first harmonic dominates at the adopted
values of governing parameters, the spatial waveform of the wave profile at these moments is also close enough to
a sinusoidal one (Fig. 3b).

4. Conclusions. Equation (17) derived in the present work may be used to study the effect of a time-
dependent magnetic field on weakly nonlinear disturbances in a film flow of a ferromagnetic viscous fluid. The
character of the waves is largely influenced both by the frequency of the field and by its amplitude. The computations
show that, as a consequence, nontrivial wave regimes may emerge, which do not occur in the case of a freely falling
fluid film.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 00-01-00849)
and INTAS (Grant No. 99-1107).
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